Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo de estudio
Tópicos
Tipo del documento
Intervalo de año
1.
STAR Protoc ; 3(1): 101158, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1650422

RESUMEN

The SARS-CoV-2 main protease of (Mpro) is an important target for SARS-CoV-2 related drug repurposing and development studies. Here, we describe the steps for structural characterization of SARS-CoV-2 Mpro, starting from plasmid preparation and protein purification. We detail the steps for crystallization using the sitting drop, microbatch (under oil) approach. Finally, we cover data collection and structure determination using serial femtosecond crystallography. For complete details on the use and execution of this protocol, please refer to Durdagi et al. (2021).


Asunto(s)
Proteasas 3C de Coronavirus/química , Modelos Moleculares , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/genética , Cristalización , Cristalografía por Rayos X , Humanos
2.
Crystals ; 11(12):1579, 2021.
Artículo en Inglés | MDPI | ID: covidwho-1580966

RESUMEN

Since early 2020, COVID-19 has grown to affect the lives of billions globally. A worldwide investigation has been ongoing for characterizing the virus and also for finding an effective drug and developing vaccines. As time has been of the essence, a crucial part of this research has been drug repurposing;therefore, confirmation of in silico drug screening studies have been carried out for this purpose. Here we demonstrated the possibility of screening a variety of drugs efficiently by leveraging a high data collection rate of 120 images/second with the new low-noise, high dynamic range ePix10k2M Pixel Array Detector installed at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS). The X-ray Free-Electron Laser (XFEL) is used for remote high-throughput data collection for drug repurposing of the main protease (Mpro) of SARS-CoV-2 at ambient temperature with mitigated X-ray radiation damage. We obtained multiple structures soaked with nine drug candidate molecules in two crystal forms. Although our drug binding attempts failed, we successfully established a high-throughput Serial Femtosecond X-ray crystallographic (SFX) data collection protocol.

3.
IUCrJ ; 7(Pt 6): 1102-1113, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1550652

RESUMEN

An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits. The general SPI analysis workflow was upgraded with the expectation-maximization based classification of diffraction patterns and mode decomposition on the final virus-structure determination step. The presented processing pipeline allowed us to determine the 3D structure of bacteriophage PR772 without symmetry constraints with a spatial resolution of 6.9 nm. The obtained resolution was limited by the scattering intensity during the experiment and the relatively small number of single hits.

4.
Structure ; 29(12): 1382-1396.e6, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1356461

RESUMEN

The COVID-19 pandemic has resulted in 198 million reported infections and more than 4 million deaths as of July 2021 (covid19.who.int). Research to identify effective therapies for COVID-19 includes: (1) designing a vaccine as future protection; (2) de novo drug discovery; and (3) identifying existing drugs to repurpose them as effective and immediate treatments. To assist in drug repurposing and design, we determine two apo structures of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease at ambient temperature by serial femtosecond X-ray crystallography. We employ detailed molecular simulations of selected known main protease inhibitors with the structures and compare binding modes and energies. The combined structural and molecular modeling studies not only reveal the dynamics of small molecules targeting the main protease but also provide invaluable opportunities for drug repurposing and structure-based drug design strategies against SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/química , Diseño de Fármacos , Reposicionamiento de Medicamentos , SARS-CoV-2 , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , Dimerización , Conformación Molecular , Simulación del Acoplamiento Molecular , Análisis de Componente Principal , Conformación Proteica , Proteínas Recombinantes/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA